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ABSTRACT: With the rapid development of wireless sensor networks and Internet of Things (IoT) technology, location-

based services (LBS) based on positioning have gained increasing attention, which in turn has driven the development of 

positioning technology. Location-based technologies can be classified into outdoor and indoor positioning systems based 

on the environment. The development of outdoor positioning technology is already mature, such as Global Positioning 

System (GPS), but GPS signals cannot penetrate most buildings, making it unsuitable for indoor environments. With the 

increasing demand for indoor positioning applications, various applications have emerged in daily life, such as public 

transportation, commercial promotion, and emergency rescue. Common mechanisms used in indoor positioning systems 

include infrared, ultrasound, Bluetooth, and Wi-Fi technologies. 

This article simulates the received signal strength indication (RSSI) of Wi-Fi signals in an indoor environment, converts 

the signal strength into distance according to the radio propagation model, and then calculates the position of the mobile 

terminal based on the transmission distance and the Least Square (LS) algorithm. The LS method using the radio 

propagation model can cause some estimated positions to be unreasonable. In order to reduce unreasonable estimation 

results, this article uses the Infinite Impulse Response (IIR) filter and Finite Impulse Response (FIR) filter algorithm to 

filter out the unreasonable signal data, improve the overall positioning accuracy, and then compare the filtered prediction 

paths using Kalman filter (KF) obtain more accurate predictions. Finally, the algorithm is implemented on a Field 

Programmable Gate Array (FPGA) on site. 

1. INTRODUCTION

Localization has a wide range of applications, including GPS, Wi-Fi positioning, and autonomous driving, making it

highly important and widely used. As a result, localization systems strive for greater accuracy. In this study, we replace 

traditional triangulation with the LS algorithm and write a program. LS calculations allow for the use of more Access 

Points (APs), leading to improved positioning results. In our comparative simulations, we initially assess the performance 

in different environments and deployment scenarios. Subsequently, we process the obtained RSSI data using IIR and FIR 

filters to find the most suitable filter coefficients for the given environment. We also compare the accuracy for different 

numbers of APs, making it easier to adapt the system to various environments. We combine the filtered radio wave data 

with KF to achieve tracking and prediction capabilities. Lastly, we consider the feasibility of implementing the system 

on hardware to further enhance computational speed. 

1.1 IIR and FIR Filter 

IIR is defined as (1). In this article, we use the IIR filter formula of BMP384 as our IIR filter (BMP384, 2020), as 

shown in equation (2), and the moving average filter as our FIR filter, as shown in equation (3). Additionally, we modify 

𝑐 and 𝑀 to find the coefficients that best suit the current environment. Next, we use equation (4) to transform the signal 

into distances, which are used for LS localization. 

𝑦𝑦𝑛[𝑖] = −∑ 𝑎𝑘𝑦𝑦𝑛[𝑖 − 𝑘]𝑁
𝑘=1 + ∑ 𝑏𝑘𝑥𝑥𝑛[𝑖 − 𝑘]𝑀

𝑘=0 (1)
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                                              𝑦𝑦𝑛[𝑖] =
𝑐𝑦𝑦𝑛[𝑖−1]+𝑥𝑥𝑛[𝑖]

𝑐 + 1
=

𝑐

𝑐+1
𝑦𝑦𝑛[𝑖 − 1] +

1

𝑐+1
𝑥𝑥𝑛[𝑖] 

⇒ 𝑎1 ≜ −
𝑐

𝑐+1
, 𝑏0 ≜

1

𝑐+1
, 𝑁 = 1,𝑀 = 0                                                                    (2) 

    𝑦𝑦𝑛[𝑖] =
𝑥𝑥𝑛[𝑖]+𝑥𝑥𝑛[𝑖−1]+⋯+𝑥𝑥𝑛[𝑖−(𝑀−1)]

𝑀
, ⇒ 𝑏𝑘 ≜

1

𝑀
,                                                      (3) 

 

where 𝑀 = feedforward filter order 

 𝑏𝑘 = feedforward filter coefficient 

 𝑁 = feedback filter order 

 𝑎𝑘 = feedback filter coefficient 

 𝑥𝑥𝑛[𝑖] = input signal 

 𝑦𝑦𝑛[𝑖] = output signal 

 c = IIR filter coefficient 

 

𝑑𝑛 = 10(
𝐴−𝑦𝑛
10×𝑛

)
,                                                                            (4) 

 

where 𝐴  signal strength at a distance of 1 meter from AP 

 𝑛  path loss 

 

 

1.2 Least Square Approach 

The LS positioning algorithm offers mobile computation and is not limited by the number of APs. To use it in three 

dimensions, you need four or more reference points: 𝐴𝑃1(𝑥1, 𝑦1, 𝑧1), 𝐴𝑃2(𝑥2, 𝑦2 , 𝑧2), 𝐴𝑃3(𝑥3, 𝑦3 , 𝑧3), 𝐴𝑃4(𝑥4, 𝑦4, 𝑧4), and  

𝐴𝑃𝑛(𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛), to estimate the coordinates of an unknown point 𝑃(𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧). The calculation process is illustrated in 

steps (3) to (16) as shown in (Cengiz, 2021) (He et al., 2010). 

 

 

𝑑1
2 = (𝑃𝑥 − 𝑥1)

2  +  (𝑃𝑦 − 𝑦1)
2  +  (𝑃𝑧 − 𝑧1)

2                                                           (3) 

𝑑2
2 = (𝑃𝑥 − 𝑥2)

2  +  (𝑃𝑦 − 𝑦2)
2  +  (𝑃𝑧 − 𝑧2)

2                                                           (4) 

𝑑3
2 = (𝑃𝑥 − 𝑥3)

2  +  (𝑃𝑦 − 𝑦3)
2  +  (𝑃𝑧 − 𝑧3)

2                                                           (5) 

𝑑4
2 = (𝑃𝑥 − 𝑥4)

2  +  (𝑃𝑦 − 𝑦4)
2  +  (𝑃𝑧 − 𝑧4)

2                                                           (6) 

 

𝑑𝑛
2 = (𝑃𝑥 − 𝑥𝑛)2  +  (𝑃𝑦 − 𝑦𝑛)2  +  (𝑃𝑧 − 𝑧𝑛)2                                                          (7) 

𝑃𝑥 × 2(𝑥2 − 𝑥1) + 𝑃𝑦 × 2(𝑦2 − 𝑦1) + 𝑃𝑧 × 2(𝑧2 − 𝑧1) = 𝑑1
2 − 𝑑2

2 + 𝑥2
2 + 𝑦2

2 + 𝑧2
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2    (8) 

𝑃𝑥 × 2(𝑥3 − 𝑥1) + 𝑃𝑦 × 2(𝑦3 − 𝑦1) + 𝑃𝑧 × 2(𝑧3 − 𝑧1) = 𝑑1
2 − 𝑑3

2 + 𝑥3
2 + 𝑦3

2 + 𝑧3
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2    (9) 

     𝑃𝑥 × 2(𝑥4 − 𝑥1) + 𝑃𝑦 × 2(𝑦4 − 𝑦1) + 𝑃𝑧 × 2(𝑧4 − 𝑧1) = 𝑑1
2 − 𝑑4

2 + 𝑥4
2 + 𝑦4

2 + 𝑧4
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2  (10) 

 

𝑃𝑥 × 2(𝑥𝑛 − 𝑥1) + 𝑃𝑦 × 2(𝑦𝑛 − 𝑦1) + 𝑃𝑧 × 2(𝑧𝑛 − 𝑧1) = 𝑑1
2 − 𝑑𝑛

2 + 𝑥𝑛
2 + 𝑦𝑛

2 + 𝑧𝑛
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2 (11) 

𝑷𝒂 = 𝒃                                                                                           (12) 

𝑷 = [

𝑃𝑥

𝑃𝑦

𝑃𝑧

]                                                                                         (13) 

𝒂 = 2 ×

[
 
 
 
 
𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1

𝑥3 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑥4 − 𝑥1

⋮
𝑥𝑛 − 𝑥1

𝑦2 − 𝑦1

⋮
𝑦𝑛 − 𝑦1

𝑧2 − 𝑧1

⋮
𝑧2 − 𝑧1]

 
 
 
 

                                                              (14) 
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𝒃 =

[
 
 
 
 
 
𝑑1

2 − 𝑑2
2 + 𝑥2

2 + 𝑦2
2 + 𝑧2

2 − 𝑥1
2 − 𝑦1

2 − 𝑧1
2

𝑑1
2 − 𝑑3

2 + 𝑥3
2 + 𝑦3

2 + 𝑧3
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2

𝑑1
2 − 𝑑4

2 + 𝑥4
2 + 𝑦4

2 + 𝑧4
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2

⋮

𝑑1
2 − 𝑑𝑛

2 + 𝑥𝑛
2 + 𝑦𝑛

2 + 𝑧𝑛
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2]
 
 
 
 
 

                                                (15) 

𝑷 = (𝒂𝑇𝒂)−1𝒂𝑇𝒃                                                                               (16) 

1.3 Kalman Filter Tracking Algorithm 

The KF is an optimal linear estimator of signals in measurement noise (Kalman, 1960). The Kalman filtering equations 

provide a real-time algorithm for estimating an unknown recursive state vector, with the measurement quality of each 

noisy data based on the minimization of mean square error to track its target (Chen et al., 2005). It has the advantage of 

low memory footprint (it only needs to retain the previous state, aside from the current state) and operates at high speeds, 

making it well-suited for applications involving real-time constraints and embedded systems. The system's state is 

represented as a vector with real-valued elements. 

With each discrete-time step, this linear transformation acts on the current state, producing a new state along with some 

noise. Additionally, control information from known controllers is integrated into the system. The KF algorithm is a 

special case of Bayesian filtering algorithms under linear and Gaussian distribution conditions. It utilizes the Bayesian 

Approach to predict the observation points𝑥0:𝑘 of the state model at time k and obtain the predicted distribution for the 

target 𝑥0:𝑘+1. In the correction step, it uses known observation points 𝑧0:𝑘+1 to obtain the predicted distribution for the 

target𝑥0:𝑘+1 (Huang et al., 2005). Therefore, the various stages of the KF's cycle can be derived from Markov Chain and 

Bayesian Theory. 

 

 

[
 
 
 
 
 
𝑥1,𝑘+1

𝑥2,𝑘+1

𝑥3,𝑘+1

𝑆1,𝑘+1

𝑆2,𝑘+1

𝑆3,𝑘+1]
 
 
 
 
 

=

[
 
 
 
 
 
1 0 0 ∆𝑘 0 0
0 1 0 0 ∆𝑘 0
0 0 1 0 0 ∆𝑘

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1 ]

 
 
 
 
 

[
 
 
 
 
 
𝑥1,𝑘

𝑥2,𝑘

𝑥3,𝑘

𝑆1,𝑘

𝑆2,𝑘

𝑆3,𝑘]
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
∆𝑘

2

2
0 0

0
∆𝑘

2

2
0

0 0
∆𝑘

2

2

∆𝑘 0 0
0 ∆𝑘 0
0 0 ∆𝑘 ]

 
 
 
 
 
 
 
 

[

𝜂1,𝑘

𝜂2,𝑘

𝜂3,𝑘

]                                  (17) 

𝐸{∆𝑛𝛈𝑛(∆𝑛𝛈𝑛)𝑇} = {
𝐐𝑘    for 𝑛 = 𝑘
0       for 𝑛 ≠ 𝑘

= 𝛿(𝑘 − 𝑛) 𝐐𝑘                                               (18) 

𝐱k+1 = 𝚽𝑘𝐱𝑘 + ∆𝑛𝛈𝑛,   𝛈𝑘~𝑁  (𝟎,𝐐𝑘)                                                       (19) 

 

 

Equations (17)-(19) are used to calculate the position prediction for the received signal location in Wi-Fi sampling. 

The prediction of the next time step's position is based on the previous time step's position, taking into account possible 

noise. In these equations, 𝑥1,𝑘, 𝑥2,𝑘, and 𝑥3,𝑘 represent the position of the mobile device in the X, Y, and Z-axis directions, 

respectively. 𝑠1,𝑘, 𝑠2,𝑘, and 𝑠3,𝑘 represent the velocity of the mobile device in the X, Y, and Z directions. X𝑘  is the state 

matrix, 𝚽𝑘  is the model noise matrix, ∆𝑘 represents the time between signal receptions, 𝛈𝑘 is the mobile state process 

noise matrix, and 𝐐𝑘 is the model noise covariance matrix. 

 

 

[

𝑧1,𝑘

𝑧2,𝑘

𝑧3,𝑘

] = [
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]

[
 
 
 
 
 
𝑥1,𝑘

𝑥2,𝑘

𝑥3,𝑘

𝑠1,𝑘

𝑠2,𝑘

𝑠3,𝑘 ]
 
 
 
 
 

+ [

𝑣1,𝑘

𝑣2,𝑘

𝑣3,𝑘

]                                                    (20) 

   𝐸{𝐯𝑛(𝐯𝑛)𝑇} = {
𝐑𝑘     for 𝑛 = 𝑘
0       for 𝑛 ≠ 𝑘

= 𝛿(𝑘 − 𝑛) 𝐑𝑘                                                  (21) 

𝐙k+1 = 𝐇𝑘𝐱𝑘 + 𝐯𝑛,   𝐯𝑘~𝑁  (𝟎, 𝐑𝑘)                                                         (22) 
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Equations (20)-(22) involve the actual measured positions. To correct potential errors in predictions and achieve 

optimal positioning, it is necessary to use actual positions for reasonable prediction adjustments. 𝐙𝑘 represents the actual 

measurement matrix, 𝐇𝑘  is the measurement transition matrix, 𝐕𝑘  is the measurement noise matrix, and 𝐑𝑘  is the 

measurement noise covariance matrix.  

 

 

𝐱̃𝑘 = 𝚽𝑘−1𝐱̂𝑘−1                                                                               (23) 

 𝐏̃𝑘 = 𝚽𝑘−1𝐏̂𝑘−1𝚽𝑘−1
𝑇 + 𝐐𝑘−1                                                                  (24) 

 𝐞𝑘|𝑗 = 𝐱𝑘|𝑗 − 𝐱𝑘,   𝐞𝑘|𝑘 = 𝐞̂𝑘,   𝐞𝑘|𝑘−1 = 𝐞̃𝑘                                                        (25) 

 𝐏̂𝑘 = 𝐸{𝐞̂𝑘𝐞̂𝑘},         𝐏̃𝑘 = 𝐸{𝐞̃𝑘𝐞̃𝑘
𝑻}                                                              (26) 

𝐊𝑘 = 𝐏̃𝑘𝐇𝑘
𝑇[𝐇𝑘𝐏̃𝑘𝐇𝑘

𝑇 + 𝐑𝑘]
−1                                                               (27) 

𝐱̂𝑘 = 𝐱̃𝑘  +  𝐊𝑘(𝐳𝑘 − 𝐇𝑘𝐱̃𝑘)                                                                   (28) 

   𝐏̂𝑘 = [𝐈 − 𝐊𝑘𝐇𝑘]𝐏̃𝑘                                                                          (29) 

 

 

Subsequently, the process enters the Kalman filtering cycle, where 𝐱̂𝑘 = 𝐱𝑘|𝑘 and 𝐱̃𝑘 = 𝐱𝑘|𝑘−1 are the state estimation 

matrices and state prediction matrices, respectively. 𝐔𝑘 is the model noise matrix, 𝐞𝑘|𝑗 , 𝐞̂𝑘, and 𝐞̃𝑘 are the state error 

matrices, estimation error matrices, and prediction error matrices, respectively. 𝐏̂𝑘,  𝐏̃𝑘, and 𝐊𝑘 are the estimation error 

covariance matrices, prediction error covariance matrices, and Kalman gain (KG) (Chiou et al., 2012) (Hou et al., 2016) 

(Al-Fuqaha et al., 2015). 

 

2. RESEARCH METHODOLOGY 

2.1 Developing with MATLAB Software 

In the MATLAB simulation, we introduced Gaussian noise with different variances to the RSSI to simulate real-world 

environments. With the same number of APs, we applied both IIR and FIR filters while varying 𝑐 and 𝑀 to determine the 

optimal filter coefficients, as shown in Figure 1 and Figure 2. Under the same taps count, IIR filtering outperforms FIR 

filtering, as demonstrated in Figure 3, and it performs almost equally to FIR with a higher taps count, as shown in Figure 

4. FIR exhibits greater delay, and increasing the tap count to enhance filtering performance would require more registers 

in hardware, as depicted in Figure 5. Therefore, our hardware implementation will focus on the IIR filter. 

Subsequently, we compared the accuracy of the best-performing filter coefficients under different numbers of APs, as 

shown in Figure 6 and Table 1. It can be observed that under the best coefficients, there is minimal difference in accuracy 

between the two filters. Additionally, we found that LS converges at 5APs, and increasing the number of APs has little 

impact on the localization results. Under the foundation of LS positioning, the KF algorithm is introduced to enhance the 

overall algorithm's accuracy using its recursive properties and achieve tracking effects. The simulation tests the CDF, as 

shown in Figure 7. 

 

 
Figure 1. Cumulative probability distribution of the error distances, 5AP 𝑐 from 1 to 5, when the noise variance is 

2dB. 
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Figure 2. Cumulative probability distribution of the error distances, 5AP 𝑀 from 3 to 7, when the noise variance is 

2dB. 

 

Figure 3. Cumulative probability distribution of the error distances, when IIR and FIR under same taps. 

 

Figure 4. Cumulative probability distribution of the error distances, best coefficient of IIR and FIR. 
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Figure 5. Compare the delay between the IIR filter and the FIR filter. 

 
Figure 6. Cumulative probability distribution of the error distances, when the noise variance is 2dB. 

 

 

Table 1. Cumulative probability distribution of the error distances, LS 5AP with IIR and FIR filter in different 

environments. 

Method 

 

CDF 

VAR=2 

5AP+IIR 

𝑐=1 

VAR=2 

5AP+IIR 

𝑐=2 

VAR=2 

5AP+FIR 

𝑀=5 

VAR=4.53 

5AP+IIR 

𝑐=2 

VAR=4.53 

5AP+IIR 

𝑐=3 

VAR=4.53 

5AP+FIR 

𝑀=6 

90% 4.52m 3.71m 3.90m 5.37m 4.78m 5.10m 

50% 2.33m 2.28m 2.37m 2.94m 2.96m 3.00m 



 

2023 Asian Conference on Remote Sensing (ACRS2023) 

 

 
Figure 7. Cumulative probability distribution of the error distances, 5AP+IIR, 5AP+IIR+KF, when the noise variance 

is 2dB. 

 

2.2 The Proposed Localization Algorithms Base on FPGA 

This section introduces the hardware implementation results of IIR, LS and KF, examining the experimental paths in 

a simulated indoor 3D environment. In terms of signal processing, we employ the IIR filter to filter the received signals 

and then convert them into distance data using the RSSI formula. For localization, we utilize the LS with more APs to 

achieve higher accuracy, and we split the matrix operations of the algorithm to operate on FPGA, as shown in Figure 8. 

Regarding KF tracking, Figure 9 demonstrates the circuit structure based on the (23)-(29). We split the matrices 

according to the computation cycles in the algorithm. From the software simulation results, this tracking algorithm can 

accurately reconstruct the predicted path. Hardware testing using the DE2-115 FPGA board also correctly calculates the 

values. We use shifting to amplify the values, reducing many floating-point operations, and leverage the parallel 

processing capabilities of hardware to decrease computation time. Using hardware computation offers advantages such 

as low hardware cost and high speed. 
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Figure 8. FPGA architecture of the IIR filter and LS positioning algorithm. 

 

Figure 9. FPGA architecture of the KF tracking algorithm. 

 

To address the issue of floating-point arithmetic in hardware, we adopted a shifting technique to amplify numerical 

values, reducing the problems associated with floating-point arithmetic and compensating for the loss of precision in 

hardware implementation. Figure 10 compares the results between MATLAB simulation and ModelSim simulation. 

Figure 11 demonstrates that the errors introduced by hardware shifting are acceptable. In comparison, it offers a faster 

computation speed, making it more suitable for real-time location-based services. 

The comparison in Figure 11 also shows that using KF for localization and tracking enhances accuracy. From the 

experimental results, it's evident that the FPGA-based localization and tracking algorithm can effectively meet the 

requirements of real-time positioning and tracking. 

 

 

 

Figure 10. MATLAB simulation results and ModelSim simulation results. 

 

 
Figure 11. Cumulative probability distribution of the error distances, 5AP+IIR software-based, 5AP+IIR FPGA-

based, 5AP+IIR+KF software-based and 5AP+IIR+KF hardware based. 
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Table 2. Comparison of Execution Times for Positioning and Tracking Localization Algorithms: Software-Based vs. 

FPGA-Based Approaches. 

Approach 

Executing Time 

Tradition Software Program 

(CPU i7 / RAM 16GB) 

The Proposed Approach 

(Hardware Design and FPGA) 

IIR+LS Executing Time 57.552us 3.132us 

IIR+LS+KF Executing Time 112.543us 3.770us 

 

3. CONCLUSIONS 

Regarding localization, using the LS algorithm for localization allows us to use more APs compared to traditional 

triangulation, improving localization accuracy. It enables us to adjust the number of APs used for localization based on 

different environments and hardware capabilities. In terms of tracking, in an ideal environment, adding an IIR filter at the 

signal end can reduce the estimation error of the KF filter. Although IIR filtering introduces nonlinear phase delays, the 

magnitude of the error caused by IIR in localization depends on the sampling rate and object movement speed. Leveraging 

the fast processing speed of hardware can mitigate the localization error caused by IIR filter computation delays. On the 

hardware side, to optimize and improve the implementation of FPGA methods, we used shifters instead of multipliers 

and dividers to overcome hardware issues related to floating-point calculations. As shown in Figure 11 and Table 2, the 

FPGA achieves comparable accuracy to software but offers a significant advantage in processing speed. 
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